Critical Comparison of Multi-objective Optimization Methods: Genetic Algorithms versus Swarm Intelligence

نویسندگان

  • Vladimír ŠEDĚNKA
  • Zbyněk RAIDA
چکیده

The paper deals with efficiency comparison of two global evolutionary optimization methods implemented in MATLAB. Attention is turned to an elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) and a novel multi-objective Particle Swarm Optimization (PSO). The performance of optimizers is compared on three different test functions and on a cavity resonator synthesis. The microwave resonator is modeled using the Finite Element Method (FEM). The hit rate and the quality of the Pareto front distribution are classified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Statistical Analysis of Computational Intelligence Algorithms on a Multi-Objective Filter Design Problem

This chapter presents the application of a comprehensive statistical analysis for both algorithmic performance comparison and optimal parameter estimation on a multi-objective digital signal processing problem. The problem of designing optimum digital finite impulse response (FIR) filters with the simultaneous approximation of the filter magnitude and phase is posed as a multiobjective optimiza...

متن کامل

Multi-Objective Optimization of Wire Antennas: Genetic Algorithms Versus Particle Swarm Optimization

The paper is aimed to the multi-objective optimization of wire multi-band antennas. Antennas are numerically modeled using time-domain integral-equation method. That way, the designed antennas can be characterized in a wide band of frequencies within a single run of the analysis. Antennas are optimized to reach the prescribed matching, to exhibit the omni-directional constant gain and to have t...

متن کامل

EMCSO: An Elitist Multi-Objective Cat Swarm Optimization

This paper introduces a novel multi-objective evolutionary algorithm based on cat swarm optimizationalgorithm (EMCSO) and its application to solve a multi-objective knapsack problem. The multi-objective optimizers try to find the closest solutions to true Pareto front (POF) where it will be achieved by finding the less-crowded non-dominated solutions. The proposed method applies cat swarm optim...

متن کامل

Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator

Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...

متن کامل

A FAST FUZZY-TUNED MULTI-OBJECTIVE OPTIMIZATION FOR SIZING PROBLEMS

The most recent approaches of multi-objective optimization constitute application of meta-heuristic algorithms for which, parameter tuning is still a challenge. The present work hybridizes swarm intelligence with fuzzy operators to extend crisp values of the main control parameters into especial fuzzy sets that are constructed based on a number of prescribed facts. Such parameter-less particle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010